Machine Learning mit Python – KI und Deep Learning in 5 Sessions erklärt
Ab dem 09.04. lernen Sie in fünf Sessions künstliche Intelligenz zu entwickeln: Machine Learning, neuronale Netze und Deep Learning – alles effizient in Python.
Machine Learning mit Python – KI und Deep Learning in 5 Sessions erklärt
Ab dem 09.04. lernen Sie in fünf Sessions künstliche Intelligenz zu entwickeln: Machine Learning, neuronale Netze und Deep Learning – alles effizient in Python.
However, neither this method had a satisfactory data output that would suit the #RomChords project’s purposes. Even the state-of-the-art polyphonic detection algorithms (such as the one developed by Celemony Melodyne) produce a lot of noise, and cleaning the data to a standard usable for the project would be enormously laborious.
(Although it is possible that in a few years, progress in #DeepLearning will make this method much more effective and efficient).
7/20
Dieser Artikel ist zwar schon etwas älter, aber er lässt einen doch etwas nachdenken ...
#ChatGPT besteht den #TuringTest, gilt KI jetzt als intelligent? - Das Netz ist politisch https://dnip.ch/2024/07/15/chatgpt-besteht-den-turing-test-gilt-ki-jetzt-als-intelligent/ @nohillside #Chatbot #ElizaEffekt #ArtificialIntelligence #NaturalLanguageProcessing #NLP #MaschineLearning #DeepLearning #Digitalisierung #digitalization #MenschMaschineInteraktion #PromptEngineering #DNIP
Machine Learning mit Python – KI und Deep Learning in 5 Sessions erklärt
Ab dem 09.04. lernen Sie in fünf Sessions die Welt der künstlichen Intelligenz kennen. Von Machine Learning über neuronale Netze bis zu Deep Learning.
Entwicklerin (w/m/d) Maschinelles Lernen gesucht – Metropolregion München
Du bist Expertin im Bereich Natural Language Processing und Deep Learning? Du willst mit deiner Arbeit echte gesellschaftliche Wirkung erzielen? Dann ist diese Stelle genau das Richtige für dich.
Gestalte mit die Zukunft der KI für Deutschlands Sicherheit – jetzt bewerben.
3/ Soft Targets
Diese Wahrscheinlichkeitsverteilungen, die sogenannten Soft Targets, enthalten wertvolle Informationen – mehr als nur die korrekte Antwort. Sie zeigen, wie sicher sich das Modell bei seinen Vorhersagen ist.
#DeepLearning
MSc students and doctoral researchers interested in theoretical foundations of deep learning and its applications in ecological research - we've got something for you ;)
https://www.idiv.de/events/summerschool2025/
#FloraIncognita #Summerschool #Deeplearning ##biodiversity #ecology #iDiv
LM Studio
Discover, download, and run local LLMs
#python #rust #c #c++ #machinelearning #deeplearning #ai #developer #dev #devsecops #devops #mlops #learn #learning #focus #study #git #gitlab #github #codeberg #software #statistics #pandas #numpy #tensorflow #pytorch #jax #huggingface #linux #ubuntu #mint #popos #llm #openai #chatgpt
AI-generated tissue images: Study shows risk of deception
Real or AI-generated image? Experts take more time to decide, correct answers are (intuitively) given more quickly than incorrect ones.
KI-generierte Gewebebilder: Studie zeigt Täuschungsgefahr
Echt oder KI-erzeugtes Bild? Experten lassen sich bei Entscheidung mehr Zeit, richtige Antworten werden (intuitiv) schneller abgegeben als falsche.
Machine Learning mit Python – KI und Deep Learning in 5 Sessions erklärt
Ab dem 09.04. lernen Sie in fünf Sessions die Welt der künstlichen Intelligenz kennen. Von Machine Learning über neuronale Netze bis zu Deep Learning.
I wrote "there are no simulations" a while ago, referring to a chess playing robot as an example. To explain this better, let's consider what is the "reality" for a chess engine.
Is the reality the abstract game with the FIDE rules, and if a physical chess piece is slightly off-center on a square it's a "simulation artifact"? Because we can only represent the game physically in a manner of imperfect fidelity we could argue that the abstract game is the reality and there are imperfect projections of it on different media.
There can be a physical chess board, or a board represented as pixels on a screen. There can also be a chess playing robot moving and sensing physical pieces. These are all projections from the game itself which is played in the space of rules and not in the space of representations.
The knowledge and skills for the game of chess are embodied in different agents, human or machine.
This applies to all "simulations" actually. There are no simulations, only games, interfaces and embodiments.
It doesn't matter if a flight simulator for pilot training isn't totally photorealistic. They trained pilots successfully with very crude simulators before GPUs were a thing. What matters is how the skills and knowledge are represented in the games, to make them transferrable across different embodiments; from flight simulators to planes of different kinds.
A struggle for ever more photorealism in AI training makes little sense; there are diminishing gains especially if these "improvements" mean lower volumes of training data. What we need to struggle towards is a scaling sweet-spot where the skills we want trained are exercised as fully as possible within compute scaling curves budgeting compute between fidelity and volume.
In any real-world training we would often trade fidelity to volume simply because volume means the agents can try many more different actions, policies and strategies. The volume is more important than fidelity as long as fidelity is just enough to exercise the relevant skills.
It is a wrong way to think to think "simulations" because it makes one focus on real-world match, when what is important is actually creating games which allow training for the skills — physical or cognitive — which are relevant and transferrable to the target context, rather than making ever heavier, ever more photorealistic high-fidelity simulations which trade volume for beauty.
It is always possible to construct curriculums of game environments where the highest fidelity environments are saved for the last fine-tunings, while the bulk of the skills and knowledge can be trained in a high-volume environments before that.
AI - the ultimate social engineer... like for real
*link provides story bypassing paywall*
#socialengineering #cybersecurity #security #infosec #itsecurity #securityawareness #fraudprevention #artificialintelligence #ai #machinelearning #technology #datascience#tech #deeplearning #bigdata #business
Auf #DeepLearning basierende Algorithmen können Tumore erkennen – Forscher des @KITKarlsruhe unter den besten Teams beim internationalen AutoPET Wettbewerb #KI #KünstlicheIntelligenz
https://nachrichten.idw-online.de/2024/11/21/kuenstliche-intelligenz-algorithmen-verbessern-analyse-medizinischer-bilder
Study: AI camera helps doctors avoid medication errors
In future, AI glasses will detect and prevent medication mix-ups in hospitals.
KI-Brillen sollen künftig Verwechslung von Medikamenten im Krankenhaus erkennen und verhindern. #Deep Learning
Studie: KI-Kamera hilft Medizi...
Studie: KI-Kamera hilft Medizinern, Medikationsfehler zu vermeiden
KI-Brillen sollen künftig Verwechslung von Medikamenten im Krankenhaus erkennen und verhindern.
Later reading app Omnivore closes down
Omnivore organizes documents including markers for later reading, or reads them aloud. But only until November 15.
Später-Lesen-App Omnivore macht dicht
Omnivore organisiert Dokumente samt Markierungen für späteres Lesen, oder liest sie auch vor. Aber nur noch bis 15. November.
KI Navigator: Jetzt noch Frühbuchertickets für die Konferenz in Nürnberg sichern
Das Programm der Konferenz KI Navigator ist dieses Jahr mit acht Tracks doppelt so umfangreich wie 2023. Noch bis zum 30. September gilt der Frühbucherrabatt.